PL EN
ORIGINAL PAPER
Measuring the installation for mercury sorption from gases on solid sorbents
,
 
,
 
 
 
 
More details
Hide details
1
Instytut Gospodarki Surowcami Mineralnymi i Energią PAN, Kraków
 
2
Politechnika Lubelska, Lublin
 
 
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk 2018;104:153-162
 
 
REFERENCES (37)
1.
An i in. 2014 – An, J.T., Shang, K.F., Lu, N., Jiang, Y.Z., Wang, T.C., Li, J. i Wu, Y. 2014. Performance evaluation of non-thermal plasma injection for elemental mercury oxidation in a simulated flue gas. Journal of Hazardous Materials t. 268, s. 237–245.
 
2.
Carey i in. 2014 – Carey, T.R., Richardson, C.F. i Chang, R. 2000. Assessing sorbent injection mercury control effectiveness in flue gas streams. Environmental Progress & Sustainable Energy t. 19, s. 167–174.
 
3.
Du i in. 2015 – Du, W., Yin, L.B., Zhuo, Y.Q., Xu, Q.S., Zhang, L. i Chen, C.C. 2015. Performance of CuOx-neutral Al2O3 sorbents on mercury removal from simulated coal combustion flue gas. Fuel Processing Technology t. 131, s. 403–408.
 
4.
Tang i in. 2017 – Tang, H.J., Duan, Y.F., Zhu, C., Li, C.F., She, M., Zhou, Q. i Cai, L. 2017. Characteristics of a biomass-based sorbent trap and its application to coal-fired flue gas mercury emission monitoring. International Journal of Coal Geology t. 170, s. 19–27.
 
5.
Dyrektywa Parlamentu Europejskiego i Rady 2010/75/UE w sprawie emisji przemysłowych (zintegrowane zapobieganie zanieczyszczeniom i ich kontrola). 2010.
 
6.
Eswaran, S. i Stenger, H.G. 2005. Understanding mercury conversion in SCR catalysts. Energy Fuel t. 19, s. 2328–2334.
 
7.
Gao i in. 2013 – Gao, Y.S., Zhang, Z., Wu, J.W., Duan, L.H., Umar, A., Sun, L.Y., Guo, Z.H. i Wang, Q. 2013. A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases. Environmental Science & Technology t. 47, s. 10813–10823.
 
8.
Ghorishi, S.B. i Sedman, C.B. 1998. Low concentration mercury sorption mechanisms and control by calcium-based sorbents: application in coal-fired processes. Journal of Air Waste Management t. 48, s. 1191–1198.
 
9.
Jeon i in. 2008 – Jeon, S.H., Eom, Y.J. i Lee, T.G. 2008. Photocatalytic oxidation of gas-phase elemental mercury by nanotitanosilicate fibers. Chemosphere t. 5, s. 969–974.
 
10.
Jurng i in. 2002 – Jurng, J., Lee, T.G., Lee, G.W., Lee, S.J., Kim, B.H. i Seier, J. 2002. Mercury removal from incineration flue gas by organic and inorganic adsorbents. Chemosphere t. 47, s. 907–913.
 
11.
Kunecki i in. 2017 – Kunecki, P., Panek, R., Wdowin, M. i Franus, W. 2017. Synthesis of faujasite (FAU) and tschernichite (LTA) type zeolites as a potential direction of the development of lime Class C fly ash. International Journal of Mineral Processing t. 166, s. 69–78.
 
12.
Liu, Y.X. i Adewuyi, Y.G. 2016. A review on removal of elemental mercury from flue gas using advanced oxidation process: chemistry and process. Chemical Engineering Research and Design t. 112, s. 199–250.
 
13.
Liu i in. 2014 – Liu, Y.X., Pan, J.F. i Wang, Q. 2014. Removal of Hg0 from containing-SO2/NO flue gas by ultraviolet/H2O2 process in an ovel photochemical reactor. AIChE Journal t. 60, s. 2275–2565.
 
14.
Liu, Y.X. i Wang, Q., 2014. Removal of elemental mercury from flue gas by thermally activated ammonium persulfate in a bubble column reactor. Environmental Science Technology t. 48, s. 12181–12189.
 
15.
Liu i in. 2015 – Liu, Y.X., Wang, Y., Wang, Q., Pan, J.F., Zhang, Y.C., Zhou, J.F. i Zhang, J. 2015. A study on removal of elemental mercury in flue gas using fenton solution. Journal of Hazardous Materials t. 292, s. 164–172.
 
16.
McLarnon i in. 2008 – McLarnon, C.R., Granite, E.J. i Pennline, H.W. 2008. The PCO process for photochemical removal of mercury from flue gas. Fuel Processing Technology t. 87, z. 1, s. 85–89.
 
17.
Morency, J. 2002. Zeolite sorbent that effectively removes mercury from flue gases. Filtration + Separation t. 39, s. 24–26.
 
18.
UNEP 2013. Minamata Convention on Mercury, Text and Annexes. [Online] http://www.mercuryconvention.o... Portals/11/documents/Booklets/Minamata%20Convention%20on%20Mercury_booklet_English.pdf [Dostęp: 2.06.2018].
 
19.
Seneviretne i in. 2007 – Seneviratne, H.R., Charpenteau, C., George, A., Millan, M., Dugwell, D.R. i Kandiyoti, R., 2007. Ranking low cost sorbents for mercury capture from simulated flue gases. Energy Fuels t. 21, s. 3249–3258.
 
20.
Shen i in. 2014 – Shen, B.X., Cai, J., Chen, J.H., Li, Z. i He, C. 2014. Removal of element mercury from simulated flue gas by clay modified with KBr and KI. CIESC Journal t. 2, s. 711–717.
 
21.
Tang i in. 2017 – Tang, H.J., Duan, Y.F., Zhu, C., Li, C.F., She, M., Zhou, Q. i Cai, L. 2017. Characteristics of a biomass-based sorbent trap and its application to coal-fired flue gas mercury emission monitoring. International Journal of Coal Geologyt. 170, s. 19–27.
 
22.
Vidic, R.D. i Siler, D.P. 2001. Vapor-phase elementalmercury adsorption by activated carbon impregnated with chloride and chelating agents. Carbon t. 39, s. 3–14.
 
23.
Wei i in. 2018 – Wei, Y., Arshad, H., Jun, Z. i Yangxian, L. 2018. Removal of elemental mercury from flue gas using red mud impregnated by KBr and KI reagent. Chemical Engineering Journal t. 341, s. 483–494.
 
24.
Wen i in. 2018 – Wen, X., Arshad, H. i Yangxian, L. 2018. A review on modification methods of adsorbents for elemental mercury from flue gas. Chemical Engineering Journal t. 346, s. 692–711.
 
25.
Wdowin i in. 2014 – Wdowin, M., Franus, M., Panek, R., Bandura, L. i Franus, W. 2014. The conversion technology of fly ash into zeolites. Clean Technologies and Environmental Policy t. 16, z. 6, s. 1217–1223.
 
26.
Wdowin M. 2015. Zastosowanie zeolitów do separacji CO2 i Hg z gazów odlotowych w procesach wychwytywania i składowania ditlenku węgla. Polska Akademia Nauk, Komitet Inżynierii Środowiska. Monografie nr 120.
 
27.
Xu i in. 2016 – Xu, Y., Zeng, X.B., Luo, G.Q., Zhang, B., Xu, P., Xu, M.H. i Yao, H., 2016. Chlorine-Char composite synthesized by co-pyrolysis of biomass wastes and polyvinyl chloride for elemental mercury removal. Fuel t. 183, s. 73–79.
 
28.
Xu i in. 2018 – Xu, W., Hussain, A. i Liu, Y., 2018. A review on modification methods of adsorbents for elemental mercury from flue gas. Chemical Engineering Journal t. 346, s. 692–711.
 
29.
Yang i in. 2007 – Yang, H.Q., Xu, Z.H., Fan, M.H., Bland, A.E. i Judkins, R.R., 2007. Adsorbents for capturing mercury in coal-fired boiler flue gas. Journal of Hazardous Materials t. 146, s. 1–11.
 
30.
Yang i in. 2010 – Yang, S., Zhang, J.Y., Zhao, Y.C., Yu, C. i Zhang, K., 2010. Pre-investigation of nanostructured TiO2-activated carbon composites for photocatalytic oxidation removal of mercury vapor. Journal of Engineering Thermophysics t. 31, s. 339–342.
 
31.
Yang i in. 2018 – Yang, W., Hussain, A., Zhang, J. i Liu, Y., 2018. Removal of elemental mercury from flue gas using red mud impregnated by KBr and KI reagent. Chemical Engineering Journal t. 341, s. 483–94.
 
32.
Zeng i in. 2004 – Zeng, H.C., Jin, F. i Guo, J., 2004. Removal of elemental mercury from coal combustion flue gas by chloride-impregnated activated carbon. Fuel t. 83, s. 143–146.
 
33.
Zhang i in. 2015 – Zhang, B., Xu, P., Qiu, Y., Yu, Q., Ma, J.J., Wu, H., Luo, G.Q., Xu, M.H. i Yao H., 2015. Increasing oxygen functional groups of activated carbon with non-thermal plasma to enhance mercury removal efficiency for flue gases. Chemical Engineering Journal t. 263, s. 1–8.
 
34.
Zhao i in. 2016 – Zhao, B., Yi, H.H., Tang, X.L., Li, Q., Liu, D.D. i Gao, F.Y. 2016. Copper modified activated coke for mercury removal from coal-fired flue gas. Chemical Engineering Journal t. 286, s. 585–593.
 
35.
Zhao i in. 2013 – Zhao, Y., Xue, F.M. i Ma, T.Z. 2013. Experimental study on Hg0 removal by diperiodatocuprate (III) coordination ion solution. Fuel Processing Technology t. 106, s. 468–473.
 
36.
Zheng i in. 2017 – Zheng, X.B., Xu, Y., Zhang, B., Luo, G.Q., Sun, P., Zou, R.J. i Yao, H. 2017. Elemental mercury adsorption and regeneration performance of sorbents FeMnOx enhanced via non-thermal plasma. Chemical Engineering Journal t. 309, s. 503–512.
 
37.
Żmuda i in. 2017 – Żmuda, R., Adamczyk, W., Lelek, Ł., Mandrela, S. i Wdowin, M. 2017. Innowacyjna technologia oczyszczania spalin z rtęci jako rozwiązanie dla wymogów stawianym przez konkluzje BAT/BREF w polskiej energetyce. Polityka Energetyczna – Energy Policy Journal t. 20, z. 4, s. 103–115.
 
ISSN:2080-0819
Journals System - logo
Scroll to top