PL EN
ORIGINAL PAPER
Determination of ecotoxic elements in flue gases from coal combustion
 
More details
Hide details
1
AGH Akademia Górniczo-Hutnicza, Wydział Energetyki i Paliw, Katedra Technologii Paliw, Kraków
 
 
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk 2019;108:155-163
 
 
REFERENCES (25)
1.
ASTM D6784-02 2002, Standard Test Method for Elemental, Oxidized, Particle-Bound and Total Mercury in Flue Gas Generated from Coal-Fired Stationary Sources (Ontario Hydro Method), ASTM International, West Conshohocken, PA, 2002. [Online] www.astm.org [Dostęp: 1.08.2019].
 
2.
Burmistrz, i in. 2014. Usuwanie rtęci z gazów spalinowych. Instalacja demonstracyjna oparta na iniekcji sorbentów pylistych. Przemysł Chemiczny 93/12, s. 2014–2019.
 
3.
Burmistrz, i in. 2016. Lignites and subbituminous coals combustion in Polish power plants as a source of anthropogenic mercury emission. Fuel Processing Technology 152, s. 250–258.
 
4.
Deng, i in. 2014. Emission characteristics of Cd, Pb and Mn from coal combustion: Field study at coal-fired power plants in China. Fuel Processing Technology 126, s. 469–475
 
5.
EPA 29 2017, US EPA, Air Emission Measurement Center (EMC), Method 29 – Metals Emissions from Stationary Sources, Determination of metals emissions from stationary sources, 2017.
 
6.
EPA 30A 2017, US EPA, Air Emission Measurement Center (EMC), Method 30A – Mercury Instrumental Procedure, Determination of total vapor phase mercury emissions from stationary sources (instrumental analyzer procedure), 2017.
 
7.
EPA 30B 2017, US EPA, Air Emission Measurement Center (EMC), Method 30B – Mercury Sorbent Trap Procedure, Determination of total vapor phase mercury emissions from coal-fired combustion sources using carbon sorbent traps, 2017.
 
8.
EPA no. 110489 2006, U.S. Environmental Protection Agency, Long-Term Field Evaluation of Mercury (Hg) Continuous Emission Monitoring Systems: Coal-Fired Power Plant Burning Eastern Bituminous Coal and Equipped With Selective Catalytic Reduction (SCR), Electrostatic Precipitator (ESP), and Wet Scrubber: Field Activities From November 2004 to September 2005, Final Report, EPA Contract GS-10F-0127J MRI Project No. 110489 November 29, 2006.
 
9.
EPA Proc. 5 2017, US EPA, Air Emission Measurement Center (EMC), Procedure 5. Quality assurance requirements for vapor phase mercury continuous emissions monitoring systems and sorbent trap monitoring systems used for compliance determination at stationary sources, 2017.
 
10.
EPA PS 12A 2017, US EPA, Air Emission Measurement Center (EMC), Performance Specification 12A for Mercury, Specifications and test procedures for total vapor phase mercury continuous emission monitoring systems in stationary sources, 2017.
 
11.
EPA PS 12B 2017, US EPA, Air Emission Measurement Center (EMC), Performance Specification 12B for Mercury – Sorbent Trap, Specifications and test procedures for monitoring total vapor phase mercury emissions from stationary sources using a sorbent trap monitoring system, 2017.
 
12.
Hara 1975, Capture of mercury vapor in air with potassium permanganate solution, Industrial Health, 13 (1975) 243.
 
13.
IChPW 2019, Analizator rtęci TEKRAN w Łaziskach, artykuł ze strony internetowej Chemicznej Przeróbki Węgla [Online] http://www.ichpw.pl/blog/2015/... [Dostęp: 15.07.2019].
 
14.
López-Antón, i in. 2007. Retention of arsenic and selenium compounds present in coal combustion and gasification flue gases using activated carbons. Fuel Processing Technology 88, s. 799–805.
 
15.
PN-EN 13211:2006, Jakość powietrza – Emisja ze źródeł stacjonarnych – Manualna metoda oznaczania stężenia rtęci ogólnej, 2006.
 
16.
PN-EN 14884:2010, Jakość powietrza – Emisja ze źródeł stacjonarnych – Oznaczanie rtęci całkowitej: automatyczne systemy pomiarowe, 2010.
 
17.
PN-EN 14181:2015-02, Emisja ze źródeł stacjonarnych – Zapewnienie jakości automatycznych systemów pomiarowych, 2015.
 
18.
PN-EN 14385:2005, Emisja ze źródeł stacjonarnych – Oznaczanie ogólnej emisji As, Cd, Cr, Co, Cu, Mn, Ni, Pb, Sb, Tl i V, 2005.
 
19.
Reddy, i in. 2005. Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during combustion. Journal of Hazardous Materials B123, s. 242–249.
 
20.
Tekran 2016 – Mercury regulations and measurement in flue gases, prezentacja multimedialna, Tekran Instruments Corporation, [Online] https://www.tekran.com/mercury... [Dostęp: 04.09.2019].
 
21.
UE 2017/1442 2017, DECYZJA WYKONAWCZA KOMISJI (UE) z dnia 31 lipca 2017 r. ustanawiająca konkluzje dotyczące najlepszych dostępnych technik (BAT) w odniesieniu do dużych obiektów energetycznego spalania zgodnie z dyrektywą Parlamentu Europejskiego i Rady 2010/75/UE, 2017.
 
22.
Wang, i in. 2010. Mercury emission and speciation of coal-fired power plants in China. Atmos. Chem. Phys. 10, s. 1183–1192.
 
23.
Zhao, i in. 2016. Migration and Emission Characteristics of Trace Elements in a 660 MW Coal-Fired Power Plant of China. Energy Fuels 30, 7, s. 5937–5944.
 
24.
Zhao, i in. 2018. Emission characteristic and transformation mechanism of hazardous trace elements in a coal-fired power plant. Fuel 214, s. 597–606.
 
25.
Zhao, i in. 2019. A review on mercury in coal combustion process: Content and occurrence forms in coal, transformation, sampling methods, emission and control technologies. Progress in Energy and Combustion Science 73, s. 26–64.
 
ISSN:2080-0819
Journals System - logo
Scroll to top