PL EN
PRACA ORYGINALNA
Platforma IS-EPOS jako nowoczesne narzędzie w badaniach sejsmiczności antropogenicznej
,
 
,
 
,
 
,
 
 
 
 
Więcej
Ukryj
1
Instytut Geofizyki PAN, Warszawa
 
2
Akademickie Centrum Komputerowe – Cyfronet, Kraków
 
3
Główny Instytut Górnictwa, Katowice
 
 
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk 2016;93:49-62
 
 
REFERENCJE (31)
1.
Brune, J.N. 1970. Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75, s. 4997–5009.
 
2.
Davies i in. 2013 – Davies, R., Foulger, G., Bindley, A. i Styles, P. 2013. Induced seismicity and hydraulic fracturing for the recovery of hydrocarbons. Marine and Petroleum Geology, 45, s. 171–185.
 
3.
Debski, W. 2015. Using meta-information of a posteriori Bayesian solutions of the hypocenter location task for improving accuracy of location error estimation. Geophysical Journal International, 201, 3, s. 1399–1408
 
4.
Debski, W. i Klejment, P. 2016. The new algorithm for fast probabilistic hypocenter locations. (Submitted and accepted for publication in Acta Geophysica).
 
5.
Hand, E. 2014. Injection wells blamed in Oklahoma earthquakes. Science, 345, s. 13–14.
 
6.
Hardebeck, J.L. i Michael, A.J. 2006. Damped regional-scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence. Journal of Geophysical Research, Solid Earth, 111, B11310, DOI:10.1029/2005JB004144.
 
7.
Izadi, G. i Elsworth, D. 2014. Reservoir stimulation and induced seismicity: Roles of fluid pressure and thermal transients on reactivated fractured networks. Geothermics, 51, s. 368–379.
 
8.
Izadi, G. i Elsworth, D. 2015. The influence of thermal-hydraulic-mechanical- and chemical effects on the evolution of permeability, seismicity and heat production in geothermal reservoirs. Geothermics, 53, s. 385–395.
 
9.
Keranen i in. 2014 – Keranen, K.M., Weingarten, M., Abers, G.A., Bekins, B.A. i Ge, S. 2014 – Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection. Science, 345, s. 448–451.
 
10.
Kijko, A. i Sellevoll, M.A. 1989. Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes. Bulletin of the Seismological Society of America, 79, s. 645–654.
 
11.
Knopoff, L. i Randall, M.J. 1970. The compensated linear-vector dipole. A possible mechanism for deep earthquakes. Journal of Geophysical Research, 75, s. 1957–1963.
 
12.
Kocot i in. 2014 – Kocot, J., Szepieniec, T., Wójcik, P., Trzeciak, M., Golik, M., Grabarczyk, T., Siejkowski, H. i Sterzel, M. 2014. A framework for domain-specific science gateways. E-science on Distributed Computing Infrastructure, s. 130–146.
 
13.
Kozłowska i in. 2015 – Kozłowska, M., Orlecka-Sikora, B., Kwiatek, G., Boettcher, M. i Dresen, G. 2015. Nanoseismicity and picoseismicity rate changes from static stress triggering caused by a MW 2.2 earthquake in Mponeng gold mine, South Africa. Journal of Geophysical Research, 120, doi:10.1002/2014JB011410.
 
14.
Kwiatek i in. 2016 – Kwiatek, G., Martínez-Garzón, P. i Bohnhoff, M. 2016: HybridMT: A MATLAB/shell environment package for seismic moment tensor inversion and refinement. Seismological Research Letters 87(4), s. 1–13.
 
15.
Leptokaropoulos i in. 2013 – Leptokaropoulos, K.M., Karakostas, V.G., Papadimitriou, E.E., Adamaki, A.K., Tan, O. i İnan, S. 2013. A homogeneous earthquake catalogue compilation for western turkey and magnitude of completeness determination. Bulletin of the Seismological Society of America, 103, 5, s. 2739–2751.
 
16.
Lizurek, G. i Lasocki, S. 2014. Clustering of mining-induced seismic events in equivalent dimension spaces. Journal of Seismology, 18, s. 543–563.
 
17.
Marcak, H. i Mutke, G. 2013. Seismic activation of tectonic stresses by mining. Journal of Seismology vol. 17(4), s. 1139–1148.
 
18.
Martínez-Garzón i in. 2014a – Martínez-Garzón, P., Kwiatek, G., Ickrath, M. i Bohnhoff, M. 2014a. MSATSI: A MATLAB package for stress inversion combining solid classic methodology, a new simplified user-handling and a visualization tool. Seismological Research Letters, 85(4), s. 1–9.
 
19.
Martínez-Garzón i in. 2014b – Martínez-Garzón, P., Kwiatek, G., Sone, H., Bohnhoff, M., Dresen, G. i Hartline, C. 2014b. Spatiotemporal changes, faulting regimes, and source parameters of induced seismicity: A case study from The Geysers geothermal field. Journal of Geophysical Research, 119, DOI: 10.1002/2014JB011385.
 
20.
McGarr, A. i Simpson, D. 1997. Keynote lecture: a broad look at induced and triggered seismicity, “Rockbursts and seismicity in mines”. [W:] Gibowicz SJ, Lasocki S (eds). Proceeding of 4th international symposium on rockbursts and seismicity in mines, Poland, A.A. Balkema, Rotterdam, s. 385–396.
 
21.
Orlecka-Sikora i in. 2014 – Orlecka-Sikora, B., Cesca, S., Lasocki, S., Lizurek, G., Wiejacz, P. i Rudziński, Ł. 2014. Seismogenesis of exceptional ground motion due to a sequence of mining induced tremors from Legnica-Głogów Copper District in Poland. Geophysical Journal International doi: 10.1093/gji/ggu109.
 
22.
Rutqvist i in. 2014 – Rutqvist, J., Cappa, F., Rinaldi, A.P. i Godano, M. 2014. Modeling of induced seismicity and ground vibrations associated with geologic CO2 storage, and assessing their effects on surface structures and human perception. International Journal of Greenhouse Gas Control, 24, s. 64–77.
 
23.
Skoumal i in. 2015 – Skoumal, R.J., Brudzinski, M.R. i Currie, B.S. 2015. Earthquakes induced by hydraulic fracturing in Poland Township, Ohio. Bulletin of the Seismological Society of America, 105, s. 189–197.
 
24.
Snoke, J.A. 1987. Stable determination of (Brune) stress drops. Bulletin of the Seismological Society of America, 77, s. 530–538.
 
25.
Stec, K. 2007. Characteristics of seismic activity of the Upper Silesian Coal Basin in Poland. Geophysical Journal International 168, s. 757–768.
 
26.
Suckale, J. 2009. Induced seismicity in hydrocarbon fields. Advances in Geophysics, 51, s. 55–106.
 
27.
Vavryčuk i in. 2008 – Vavryčuk, V., Bohnhoff, M., Jechumtálová, Z., Kolář, P. i Šílený, J. 2008. Non-double-couple mechanisms of microearthquakes induced during the 2000 injection experiment at the KTB site, Germany: A result of tensile faulting or anisotropy of a rock? Tectonophysics, 456, s. 74–93.
 
28.
Wang i in. 2016 – Wang, R., Gu, Y.J., Schultz, R., Kim, A. i Atkinson, G. 2016: Source analysis of a potential hydraulic-fracturing-induced earthquake near Fox Creek, Alberta. Geophysical Research Letters, 43, s. 564–573.
 
29.
Wiemer, S. i Wyss, M. 2000. Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the Western United States, and Japan. Bulletin of the Seismological Society of America, 90, s. 859–869.
 
30.
Wiszniowski i in. 2015 – Wiszniowski, J., Giang, N.V., Plesiewicz, B., Lizurek, G., Van, D.Q., Khoi, L.Q. i Lasocki, S. 2015. Preliminary results of anthropogenic seismicity monitoring in the region of Song Tranh 2 Reservoir, Central Vietnam. Acta Geophysica, 63, 3, s. 843–862.
 
31.
Yadav i in. 2015 – Yadav, A., Gahalaut, K., Mallika, K. i Rao, P. 2015. Annual Periodicity in the seismicity and water levels of the Koyna and Warna reservoirs, Western India: a singular spectrum analysis. Bulletin of the Seismological Society of America, 105, s. 464–472
 
ISSN:2080-0819
Journals System - logo
Scroll to top